a=-2 disubstitusikan ke persamaan 2a + b = -3, sehingga menjadi:
2.-2 + b = -3
-4 + b = -3
b = 1
Jadi, nilai a = -2 dan b = 1.
43. Tentukan persamaan garis yang melalui titik (7, 2) dan sejajar dengan garis yang melalui titik (2, 4 ) dan titik (3, 9)!
ADVERTISEMENT
SCROLL TO RESUME CONTENT
Jawabannya: Diketahui: Titik (7, 2) dan m1 = 9-43-2 = 5
Karena kedua garis sejajar maka m1 = m2 berarti m2 = 5
Ditanyakan : Persamaan garis
Penyelesaian:
y – y1 = m2 (x – x1)
y – 2 = 5 (x – 7)
y – 2 = 5x – 35
y = 5x – 35 + 2
y = 5x – 33
Jadi persamaan garisnya adalah y = 5x – 33
44. Diketahui K(2, 0), L(4, -4), M(6, 0). Tentukan nilai N, sehingga jika keempat titik tersebut dihubungkan akan membentuk belah ketupat.
Jawabannya:
N(4, 4)
45. Untuk sebuah pertunjukan Nanda sebagai panitia akan menyusun kursi dengan pola tertentu. Banyak kursi pada baris pertama adalah 20 kursi, baris kedua 23 kursi dan seterusnya sehingga banyak kursi baris berikutnya selalu bertambah 3 kursi. Berapa jumlah kursi yang diperlukan Nanda untuk mengisi pada baris terakhir jika dalam gedung pertunjukan hanya memuat 10 baris kursi?
Jawaban:
Pola barisan kursi : 20, 23, 26, 29, 32, 35, 38, 41, 44, 47 Jadi jumlah kursi yang diperluk Nanda untuk mengisi pada baris terakhir dalam pertunjukan adalah 47 kursi.
Demikian 45 soal UAS / PAS Matematika kelas 8 SMP/MTs Kurikulum Merdeka, soal PAS/SAS Terbaru .
Semoga bermanfaat.***
Disclaimer:
Kebenaran jawaban yang tertera di atas sifatnya tidak mutlak.






